Abstract
We propose a new method to estimate the empirical pricing kernel based on option data. We estimate the pricing kernel nonparametrically by using the ratio of the risk-neutral density estimator and the subjective density estimator. The risk-neutral density is approximated by a weighted kernel density estimator with varying unknown weights for different observations, and the subjective density is approximated by a kernel density estimator with equal weights. We represent the European call option price function by the second order integration of the risk-neutral density, so that the unknown weights are obtained through one-step penalized least squares estimation with the Kullback-Leibler divergence as the penalty function. Asymptotic results of the resulting estimators are established. The performance of the proposed method is illustrated empirically by simulation and real data application studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.