Abstract
Estimates of production and predation rates from bioenergetic models of chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), and lake trout (Salvelinus namaycush) suggest a long-term decline in their gross conversion efficiency (gross production/prey consumption) and the gross production to biomass ratio in Lake Ontario during 1978-1994. The former pattern was caused primarily by a declining trend in adult alewife (Alosa pseudoharengus) energy density during 1978-1985; the latter pattern resulted from reductions in growth rates (coho salmon) and a buildup of the older age-classes in the population (lake trout) over time. Model results suggest that over 100 and 25% of the annual production of adult alewife and rainbow smelt (Osmerus mordax), respectively, was consumed by salmonines during 1990 in Lake Ontario; hence, we claim that recent observations of reduced salmonine growth in Lake Ontario may be a result of prey limitation. Energy transfer from primary production to salmonines appeared to be more efficient in Lake Ontario than in Lake Michigan, probably due to higher stocking levels per unit area and higher densities of preferred prey fish in Lake Ontario. Through separate analyses, we arrived at conflicting conclusions concerning the sustainability of the food web configuration in Lake Ontario during 1990.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have