Abstract

In this paper, we show that ultrasound technology is a powerful tool for enhancing the reactivity of microcrystalline cellulose (MCC) in the presence of a solid acid catalyst. The effects of sonication on the MCC structure were studied using different characterization methods. In particular we found that pretreatment of cellulose by ultrasounds resulted in a drastic decrease of MCC particle size (<0.4 μm), leading to a better interaction with solid catalyst surfaces. As a result, the subsequent hydrolysis of sonicated MCC over a recyclable sulfonated carbon solid catalyst was found to be highly selective in producing water-soluble reducing sugars. Using such a pretreatment, glucose was produced with similar yields (up to 42%) to those obtained using conventional pretreatment methods such as ball-milling or ionic liquids, thus showing the efficiency of such a method. From the viewpoint of green chemistry, the pretreatment by ultrasound has noticeable advantages such as (1) the use of water as a unique solvent, (2) short reaction time (<3 h), (3) no need of external source of heating (ensured by dissipated energy from sonication) and (4) no polluting effluent involved or produced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.