Abstract

Wavelength modulation spectroscopy (WMS) combined with a multipass absorption cell has been used to measure a weak absorption line of carbon monoxide (CO) at 1.578 µm. A 0.95m Herriott-type cell provides an effective absorption path length of 55.1 m. The WMS signals from the first and second harmonic output of a lock-in amplifier (WMS-1 f and 2 f, respectively) agree with the Beer-Lambert law, especially at low concentrations. After boxcar averaging, the minimum detection limit achieved is 4.3 ppm for a measurement time of 0.125 s. The corresponding normalized detection limit is 84 ppm m Hz-1/2. If the integrated time is increased to 88 s, the minimum detectable limit of CO can reach to 0.29 ppm based on an Allan variation analysis. The pressure-dependent relationship is validated after accounting for the pressure factor in data processing. Finally, a linear correlation between the WMS-2 f amplitudes and gas concentrations is obtained at concentration ratios less than 15.5%, and the accuracy is better than 92% at total pressure less than 62.7 Torr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.