Abstract

Quartz-enhanced photoacoustic spectroscopy (QEPAS) technology was invented lately. Therefore it is an innovative method for trace gas detection compared with other existing technologies. In this paper, trace gas detection for carbon monoxide (CO) based on QEPAS technology is demonstrated. In order to realize high sensitive detection, a novel mid-infrared, state-of-art 4.6 m high power, continuous wave (CW), distributed feedback (DFB) quantum cascade laser (QCL) with single mode output is used as the laser exciting source. Therefore, the strongest absorption of fundamental frequency band of CO is achieved. Using the wavelength modulation spectroscopy and the 2nd harmonic detection, the influence of laser wavelength modulation depth on QEPAS signal level is investigated. Two important parameters of Q-factor and resonant frequency for quartz tuning fork as a function of gas pressure are measured. After optimization of the modulation depth of laser wavelength, the gas pressure of CO:N2 gas mixture and the improving speed of the V-R relaxation rate through the addition of water vapor, a minimum detection limit (MDL) of 1.95 parts per billion by volume (ppbv) for CO at gas pressure of 500 Torr and modulation depth of 0.2 cm-1 is achieved with a 1 sec acquisition time and the addition of 2.6% water vapor in the analyzed gas mixture. Finally, the influence of level lifetime of the targeted gas on QEPAS signal amplitude is investigated by comparison of CO QEPAS sensor performance using two different CO absorption lines of R(5) and R(6) located at 2165.6 cm-1 and 2169.2 cm-1respectively. The expression of the QEPAS signal amplitude is modified by adding the level lifetime parameter for a better precision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call