Abstract

Tensor networks are efficient representations of high-dimensional tensors with widespread applications in quantum many-body physics. Recently, they have been adapted to the field of machine learning, giving rise to an emergent research frontier that has attracted considerable attention. Here, we study the trainability of tensor-network based machine learning models by exploring the landscapes of different loss functions, with a focus on the matrix product states (also called tensor trains) architecture. In particular, we rigorously prove that barren plateaus (i.e., exponentially vanishing gradients) prevail in the training process of the machine learning algorithms with global loss functions. Whereas, for local loss functions the gradients with respect to variational parameters near the local observables do not vanish as the system size increases. Therefore, the barren plateaus are absent in this case and the corresponding models could be efficiently trainable. Our results reveal a crucial aspect of tensor-network based machine learning in a rigorous fashion, which provide a valuable guide for both practical applications and theoretical studies in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.