Abstract

Tensor networks have been recognized as a powerful numerical tool; they are applied in various fields, including physics, computer science, and more. The idea of a tensor network originates from quantum physics as an efficient representation of quantum many-body states and their operations. Matrix product states (MPS) form one of the simplest tensor networks and have been applied to machine learning for image classification. However, MPS has certain limitations when processing two-dimensional images, meaning that it is preferable for an projected entangled pair states (PEPS) tensor network with a similar structure to the image to be introduced into machine learning. PEPS tensor networks are significantly superior to other tensor networks on the image classification task. Based on a PEPS tensor network, this paper constructs a multi-layered PEPS (MLPEPS) tensor network model for image classification. PEPS is used to extract features layer by layer from the image mapped to the Hilbert space, which fully utilizes the correlation between pixels while retaining the global structural information of the image. When performing classification tasks on the Fashion-MNIST dataset, MLPEPS achieves a classification accuracy of 90.44%, exceeding tensor network models such as the original PEPS. On the COVID-19 radiography dataset, MLPEPS has a test set accuracy of 91.63%, which is very close to the results of GoogLeNet. Under the same experimental conditions, the learning ability of MLPEPS is already close to that of existing neural networks while having fewer parameters. MLPEPS can be used to build different network models by modifying the structure, and as such it has great potential in machine learning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call