Abstract

This study deals with the tracking problem for a class of nonstrict-feedback switched nonlinear systems (SNSs) with unknown time-delay and unknown functions under arbitrary switching. To achieve this goal, an adaptive neural network-based dynamic surface control (DSC) based on backstepping approach is proposed. A neural network (NN) approximator based on radial basis functions (RBFs) is utilized to approximate unknown functions. Considering properties of Gaussian basis function in RBFNNs, an adaptive neural network DSC for nonstrict-feedback structure has been developed. A Lyapunov-krasovskii functional is applied to compensate the effect of unknown delay terms. Furthermore, a prescribed performance bound (PPB) control strategy is utilized to retain the tracking error within a predefined bound. Finally, a practical example is provided to prove the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.