Abstract

In this paper, the tracking control problem of a class of uncertain strict-feedback nonlinear systems with unknown control direction and unknown actuator fault is studied. By using the neural network control approach and dynamic surface control technique, an adaptive neural network dynamic surface control law is designed. Based on the neural network approximator, the uncertain nonlinear dynamics are approximated. Using the dynamic surface control technique, the complexity explosion problems in the design of virtual control laws and adaptive updating laws can be overcome. Moreover, to solve the unknown control direction and unknown actuator fault problems, a type of Nussbaum gain function is incorporated into the recursive design of dynamic surface control. Based on the designed adaptive control law, it can be confirmed that all of the signals in the closed-loop system are semi-global bounded, and the convergence of the tracking error to the specified small neighborhood of the origin could be ensured by adjusting the designing parameters. Finally, two examples are provided to demonstrate the effectiveness of the proposed adaptive control law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.