Abstract

This paper presents an adaptive neural network dynamic surface control approach for the post-capture tethered spacecraft, where model uncertainties, input saturation, and state constraints exist. First, a dynamic model of the post-capture tethered spacecraft considering the three-dimensional attitude of the target satellite is derived by the Lagrange formalism. Then, the neural network is adopted to compensate the model uncertainties and the effects of input saturation, and a barrier Lyapunov function is employed to prevent the violation of the state constraints. The asymptotic stability of the closed-loop system is guaranteed by the Lyapunov stability theory. Finally, simulation results are given to illustrate the effectiveness of the proposed controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call