Abstract
An adaptive neural dynamic surface control (DSC) problem with fixed-time prescribed performance (FTPP) is investigated for a class of nonstrict-feedback stochastic switched systems. Differently from the existing works for FTPP problem, the stochastic switched systems with nonstrict-feedback form and completely unknown systems are considered in this paper, and the unknown functions are approximated by some radial basis function (RBF) neural networks (NNs). The desired adaptive neural controller is designed by using common Lyapunov function method and defining fixed-time prescribed performance function (PPF). And based on the adaptive DSC scheme with the nonlinear filter, the “explosion of complexity” problem is avoided. Besides, the constructed fixed-time PPF just need to meet the requirement of second derivative exists. According to the Lyapunov stability theory, the FTPP of output tracking error is achieved, and all signals of closed-loop system remain bounded in probability. Finally, simulation results are presented to verify the availability of the designed control strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.