Abstract

In this study, polyurethane films were prepared using starch as the main polyol component, and the mechanical properties of these films were investigated. The starch content of the polyols was 30–50 wt%. To confirm the formation of a urethane linkage between the −OH of starch and −NCO of toluene 2,4-diisocyanate, Fourier transform infrared (FT-IR) spectroscopic analysis was performed. Differential scanning calorimetry (DSC) thermograms of the polyurethanes resulted in two endothermic peaks, which shifted to higher temperatures with increasing starch content and −NCO/−OH molar ratio. Due to the melting behavior of polyurethane, films could be prepared by hot pressing at an appropriate temperature. Polyurethane films were prepared with various polyol starch content and −NCO/−OH molar ratios. Tensile testing indicated that the breaking stress and elastic modulus increased significantly with starch content and −NCO/−OH molar ratio. In addition, bending tests indicated an increase in breaking stress and bending modulus with starch content and −NCO/−OH molar ratio and decreased breaking strain. The strain rate in both tensile and bending tests had a significant effect on the mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call