Abstract

In this study, rigid polyurethane foams were prepared using starch as the main component of polyols and their structural, thermal, and mechanical properties were investigated. The starch content in polyols was 30∼50 wt.%. The prepared polyurethane foams had a cell structure. When the starch content and -NCO/-OH molar ratio (TS4-05, TS3-07, and TS3-05) was low, polyurethane foams were not formed. To confirm the formation of a urethane linkage between -OH of the starch and -NCO of the 2,4-TDI, FT-IR spectroscopic analysis was performed. The thermal properties of polyurethane foams were analyzed by DSC and TGA. DSC thermograms showed two endothermic peaks: a sharp peak at a lower temperature and a broad peak at a higher temperature. Both peaks were shifted to higher temperature with starch content in polyols and -NCO/-OH molar ratio. Thermal degradation of polyurethane foams began at a lower temperature and ended at a higher temperature than that of starch. The impact resistance, compressive stress and modulus of polyurethane foams increased with -NCO/-OH molar ratio and starch content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call