Abstract

Magnesium oxide (MgO) nanostructures were synthesized by DC arc plasma jet chemical vapor deposition, which possesses the advantages of being simple, economical, fast, effective and environmentally benign. The formation of “tadpole”-, dendrite-, belt- and rod-like MgO nanostructures was confirmed by scanning electron microscopy and high-resolution transmission electron microscopy. Powder X-ray diffraction analysis revealed that the nanostructures consist of cubic phase MgO. Nanobelts that were 30–50nm wide with a width/thickness ratio of 1–2 were synthesized in just 5min. Most of the nanobelts were connected to others, and the connected nanobelts possessed a single-crystal structure. A formation mechanism for MgO nanostructures was proposed. Fourier transform infrared spectra indicated the adsorption of water and CO2 on the MgO surface. The nanobelts exhibited relatively strong blue-green luminescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.