Abstract

In this work, a (Bi, Pb)2Sr2Ca2Cu3O10+δ ((Bi, Pb)-2223) solution with good film-forming capability and chemical stability was synthesized through using metal acetates as raw materials, acrylic acid as an additive, and anhydrous methanol as a solvent to adjust the sol formula. Subsequently, (Bi, Pb)-2223 thin films were fabricated on LaAlO3 (LAO) single-crystal substrates via dip-coating technology at different heat treatment temperatures, and the structures and properties of (Bi, Pb)-2223 films were characterized. It was found that when the sol stoichiometric ratio of Bi: Pb: Sr: Ca: Cu was controlled at 1.9: 0.35: 2: 2: 3 and the gel film was heat-treated at 860 °C and dwelled for 120 min in an mixed atmosphere of N2: O2 = 96: 4, the prepared thin film with a pure (Bi, Pb)-2223 superconducting phase exhibited excellent biaxial texture, a dense surface structure, and had a T c of 106 K and a ΔT c of 6 K. The microstructure analysis revealed a layered epitaxial growth of the film along the LAO substrate with a regular arrangement of atoms and a consistent interlayer spacing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call