Abstract

Nile blue/graphene (NB-GNs) nanocomposite was synthesized for the first time via a green and effective one-step electrochemical method, allowing to reduce graphene oxide (GO) and NB on the glassy carbon electrode (GCE) simultaneously and construct GCE-GNs-NBpoly composite. The composite was characterized by scanning electron microscopy (SEM), UV–Vis spectroscopy, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical results obtained in the absence of any redox probe, where NB was active, allowed to trace step-by-step addition of the NB-GNs nanocomposite onto the GCE electrode surface, supporting formation of the GCE-GNs-NBpoly composite. The electrocatalytic activity of the as-prepared GCE-GNs-NBpoly towards O2 reduction was studied in neutral medium. The results revealed excellent electrocatalytic performance for two-electron reduction of oxygen, suggesting its potential application as metal-free electrocatalysts for O2 reduction reaction. Application of the GCE-GNs-NBpoly in electrochemical biosensing was demonstrated by immobilization of glucose oxidase (GOx) on the surface of GCE-GNs-NBpoly, and then, using it for sensing of glucose. The biosensor exhibited a linear response, from 0.2 to 2.0mM glucose, with a low detection limit, 2.1μM, and high sensitivity, 67.0μAmM−1cm−2, obtained by cyclic voltammetry method. The proposed biosensor was successfully tested for determination of glucose in blood serum samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.