Abstract

A novel and uniform graphene nanosheet-gold nanoparticles (GNs-AuNPs) hybrid has been fabricated from sulfur-modified graphene nanosheets (S-GNs) impregnated with HAuCl4 as Au precursor. Physicochemical and morphological characteristics of the GNs-AuNPs hybrids were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), surface Raman spectroscopy (SRS), and high resolution transmission electron microscopy (HRTEM). The results of the XRD and HRTEM demonstrated well dispersed Au nanoparticles on GNs with an average particle size of less than 10nm and a narrow size distribution of 6 to 8nm. A film of GNs-AuNPs hybrid was constructed on a glassy carbon electrode (GCE) through layer-by-layer (LBL) assembly of 4-aminothiphenol (ATP) on GCE, and then, transferring the hybrid to the sulfur function of ATP to form GCE-ATP-GNs-AuNPs modified surface. Application of the GNs-AuNPs hybrid in electrochemical biosensing was demonstrated by immobilization of glucose oxidase (GOx) as a model on the surface of GCE-ATP-GNs-AuNPs, and then, using it for sensing of glucose. The biosensor exhibited a wide linear response range, from 1.0 to 12.0mM and 0.1 to 8.0mM glucose, with a detection limit of 9.3 and 4.1μM and high sensitivity, 47.6μAmM−1cm−2 and 45.0kΩ/log(Cglucose/mM) obtained by voltammetry and electrochemical impedance spectroscopy (EIS), respectively. According to the results obtained by analysis of the EIS experimental data, the source of enhanced activity was found to be originated from the synergistic effect of GNs and AuNPs, the role of ATP mediating assembling of GNs-AuNPs hybrid on GCE, and the increase in the surface roughness. This work opens up a new and facile way for direct preparation of metal nanoparticles embedded in GNs, which will enable exciting opportunities in advanced applications based on graphene-metal hybrids like electrocatalysis for energy conversion and highly sensitive modifier films for electrochemical sensors and biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.