Abstract

Antimicrobial and antiviral nanocomposites based on polylactic acid (PLA) and chitosan were synthesized by a thermochemical reduction method of Ag+ ions in the PLA-Ag+-chitosan polymer films. Features of the structural, morphological, thermophysical, antimicrobial, antiviral, and cytotoxic properties of PLA-Ag-chitosan nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and antiviral, antimicrobial, and cytotoxic studies. The effects of temperature and the duration of reduction of Ag+ ions on the structure of PLA-Ag-chitosan nanocomposites were established. During the thermochemical reduction (T = 160 °C, t = 5 min) of silver palmitate ions in PLA-Ag+-chitosan polymer films, Ag nanoparticles with an average size of 4.2 nm were formed. PLA-Ag-chitosan polymer nanocomposites have strong antimicrobial activity against S.aureus and E.coli strains. In particular, for PLA-chitosan samples containing 4% Ag, the diameters of the S.aureus and E.coli growth inhibition zones were 25.8 and 25.0 mm, respectively. The antiviral activity of the nanocomposites against influenza A virus, herpes simplex virus type 1, and adenovirus serotype 2 was also revealed. The PLA-4%Ag-chitosan nanocomposites completely inhibited the cytopathic effect (CPE) of herpes virus type 1 by 5.12 log10TCID50/mL (high antiviral activity) and the development of the CPE of influenza virus and adenovirus by 0.60 and 1.07 log10TCID50/mL (relative antiviral activity). The obtained nanocomposites were not cytotoxic; they did not inhibit the viability of MDCK, BHK-21, and Hep-2 cell cultures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.