Abstract
Aims: The aim of this study was to design peptides derived from glycoproteins H (gH) and B (gB) of herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) with the potential to block herpetic infection and to evaluate their ability to inhibit HSV-1 and HSV-2 infection in vitro. Methods: A library of continuous 15-25 residue stretches (CRSs) located at the surface of gH and gB from HSV-1 and HSV-2 was created. These CRSs were analyzed, and only those that were highly flexible and rich in charged residues were selected for the design of the antiviral peptides (AVPs). The toxicity of the AVPs was evaluated by MTT reduction assays. Virucidal activity of the AVPs was determined by a plaque reduction assay, and their antiviral effect was measured by cell viability assays. Results and Conclusion: Four AVPs (CB-1, CB-2, U-1, and U-2) derived from gB and gH were designed and synthetized, none of which showed high levels of toxicity in Vero cells. The U-1 and U-2 gB-derived AVPs showed high virucidal and antiviral activities against both HSV-1 and HSV-2. The gH-derived peptide CB-1 showed high virucidal and antiviral activities against HSV-2, while CB-2 showed similar results against HSV-1. The peptides CB-1 and CB-2 showed higher IC<sub>50</sub> values than the U-1 and U-2 peptides.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.