Abstract
TiO2 microspheres with a uniform particle size distribution were synthesized by hydrothermal method. After being sintered, the titania microspheres that are obtained have an average diameter of 5 μm, a surface area of 383.5 m2/g, an average pore volume of 0.25 cm3/g, and an average pore diameter of 35.9 nm. Normal phase chromatography was separated the mixture of benzene, nitrobenzene and nitro-anisole, three substances were separated well on the titania column. The microspheres possess enough rigidity to withstand high packing pressure and are very useful as a new kind of chromatographic packing material for high performance liquid chromatography (HPLC).
Highlights
TiO2 has been extensively used in photocatalysis [1], lithium battery [2], sensor materials [3], dye degradation [4], cosmetics [5] and other technical fields [6]
The synthesis of TiO2 microspheres are prepared by the following steps: 0.72 g of ammonium sulphate, 8.5 g of urea, 8mLof water and 8mL of ethanol were added into the conical beaker
TiO2 synthesized by hydrothermal treatment are spherical and free
Summary
TiO2 has been extensively used in photocatalysis [1], lithium battery [2], sensor materials [3], dye degradation [4], cosmetics [5] and other technical fields [6]. Titania has greater mechanical and pH stability (pH 1-14) that may compensate for the narrow pH range of silica and it is suitable for the separation of the alkaline substances especially the biological macromolecules [11]. The research about the TiO2 used as the chromatographic packings instead of the silica column is less reported, not to mention the practical application. The main difficult is due to how to synthesize the uniform and controllable size TiO2 microspheres.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chromatography & Separation Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.