Abstract

AbstractBa(TMHD)2, Sr(TMHD)2 and Ti-isopropoxide were used to fabricate the (SrxTi1 x)O3 and (Ba1 x Srx)TiO3 thin films. The decomposition and degradation characteristics of Ba(TMHD)2 and Sr(TMHD)2 with storage time were analyzed using a differential scanning calorimeter (DSC). The thin films were fabricated on Si(p-type 100) and Pt/SiO2/Si substrates with Ar carrier gas using ECR plasma (or without ECR plasma) assisted MOCVD. Experimental results showed that the ECR oxygen plasma increased the deposition rate, the ratio of Sr/Ti, the dielectric constant and the leakage current density of the film. The dependency of the crystallinity and the electrical properties on the Sr/Ti ratio of films were investigated. However, almost of the films deposited with Ar carrier gas had slightly high dielectric loss and high leakage current density and showed non-uniform compositional depth profiles. NH3 gas was also used to decrease the degradation of the MO-sources. Mass spectra in-situ monitoring of source vapors in ECR-PAMOCVD system were obtained. By introducing NH3 as a carrier gas, a significant improvement was achieved in the volatility and the thermal stability of the precursors, and the vaporization temperatures of the precursors were reduced compared to Ar carrier gas. The uniform compositional depth profile, less hydrogen and carbon content and the good electrical properties of (SrxTi1−x)O3 thin films were obtained with NH3 carrier gas. The (Ba1−xSrx)TiO3 thin film were fabricated to have very fine and uniform microstructure, the dielectric constant of 456, the dielectric loss of 0.0128, the leakage current density of 5.01 × 10−8A/cm2 at 1V and the breakdown field of 3.65MV/cm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.