Abstract

Nanofibrous scaffolds were obtained by co‐electrospinning poly (3‐hydroxybuty‐rate‐co‐3‐hydroxyvalerate) (PHBV) and fibroin regenerated from silk in different proportions using 1,1,1,3,3,3‐hexafluoro‐2‐isopropanol (HFIP) as solvent. Field emission scanning electron microscope (FESEM) investigation showed that the fiber diameters of the nanofibrous scaffolds ranged from 190 to 460 nm. X‐ray diffraction (XRD) and Fourier transform infrared spectroscopy analysis (FT‐IR) showed that the main structure of silk fibroin (SF) in the nanofibrous scaffold was β‐sheet. Compared to the PHBV nanofibrous scaffold, the surface hydrophilicity and water‐uptake capability of the PHBV/SF nanofibrous scaffold with 50/50 were improved. The results of cell adhesion experiment showed that the fibroblasts adhered more to the PHBV/SF nanofibrous scaffold with 50/50 than the pure PHBV nanofibrous scaffold. The proliferation of fibroblast on the PHBV/SF nanofibrous scaffold with 50/50 was higher than that on the pure PHBV nanofibrous scaffold. Our results indicated that the PHBV/SF nanofibrous scaffold with 50/50 may be a better candidate for biomedical applications such as skin tissue engineering and wound dressing. POLYM. ENG. SCI., 55:907–916, 2015. © 2014 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call