Abstract
Polymer substrates obtained from poly(lactic acid) (PLA) nanofibres modified with carbon nanotubes (CNTs) and gelatin (GEL) for cartilage tissue engineering are studied. The work presents the results of physical, mechanical, and biological assessment. The hybrid structure of PLA and gelatine nanofibres, carbon nanotubes‐ (CNTs‐) modified PLA nanofibres, and pure PLA‐based nanofibres was manufactured in the form of fibrous membranes. The fibrous samples with different microstructures were obtained by electrospinning method. Microstructure, physical and mechanical properties of samples made from pure PLA nanofibres, CNTs‐, and gelatin‐modified PLA‐nanofibres were studied. The scaffolds were also tested in vitro in cell culture of human chondrocytes collected from patients. To assess the influence of the nanofibrous scaffolds upon chondrocytes, tests for cytotoxicity and genotoxicity were performed. The work reveals that the nanofibrous structures studied were neither genotoxic nor cytotoxic, and their microstructure, physical and mechanical properties create promising scaffolds for potential use in cartilage repairing.
Highlights
Trauma or injuries related to cartilage tissues usually lead to progressive tissue degeneration and eventual depletion of healthy cartilage, which can induce pain and discomfort
Developing a biologically active material for repairing the defects in upper respiratory tract and reconstructing the defective structures which occurred in patients due to neoplasms as well as in treatment of stenoses or traumas of mechanical, thermal and postintubation origin is the challenge of regenerative medicine and material engineering
The results show, statistical difference between cells cultured on poly(lactic acid) (PLA) and PLA + GEL materials in comparison to control
Summary
Trauma or injuries related to cartilage tissues usually lead to progressive tissue degeneration and eventual depletion of healthy cartilage, which can induce pain and discomfort. The problem relates to the upper respiratory tract atresia (neoplasms, injuries). Reconstruction of upper respiratory tract in case of neoplasms, traumas of mechanical, thermal, or chemical origin, and postintubation and posttrauma stenoses is a medical problem, which still remains without a solution. The materials used so far, autogenous as well as plastic ones, fail to give results that would be satisfying for patients and surgeons [3,4,5]. Developing a biologically active material for repairing the defects in upper respiratory tract and reconstructing the defective structures which occurred in patients due to neoplasms as well as in treatment of stenoses or traumas of mechanical, thermal and postintubation origin is the challenge of regenerative medicine and material engineering.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have