Abstract

Tissue grafting is mostly used for repair and replacement of severely damaged tissues, the key challenges are compatibility, availability of the grafts, complex surgical process and post-operative complications. Hence, additive technologies such as three-dimensional (3D) bioprinting have emerged as promising alternative for tissue engineering in order to ensure safety, compatibility, and rapid healing. The aim of this chapter is to give an elaborate account of 3D printed scaffolds for bone, cartilage, cardio-vascular and nerve tissue engineering. Various components such as polycaprolactone, poly (lactic-co-glycolic acid), and β-tricalcium phosphate, bioglass 45S5, and nano-hydroxyapatite are combined with collagen and its derivatives to achieve specific pore size in the scaffolds for effective restoration of the defects of soft or hard tissues. Likewise, proanthocyanidin, oxidized hyaluronic acid, methacrylated gelatin, are used in collagen based 3D printed scaffolds for cartilage tissue engineering. Bioink with collagen as active component is also used for developing cardio-vascular implants with recellularizing properties. Collagen in combination with silk fibroin, chitosan, heparin sulphate and others are ideal for fabrication of elastic nerve guidance conduits. In view of the background, collagen-supplemented hydrogels can revolutionize future biomedical approaches for the development of complex scaffolds for tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call