Abstract

Purpose: of this paper is to prepare a nano magnetic fluids with nano additives to have the combined characteristics of high yield stress and better magnetic properties for smart vehicles. This study focuses on increasing the sedimentation time of the fluid using suitable nano additive nickel along with graphene as fillers. Design/methodology/approach: Magnetic nano sized nickel particle based electro- magneto-rheological fluid was prepared and graphene nanoparticle with thickness less than 10nm was introduced as an additive to reduce its sedimentation. This added plate like graphene acts as filler which seals the interfaces of nickel particles and thereby it improves the resistance to sedimentation. Triton X 100 was added as the surfactant for the fluid to reduce the agglomeration of the particles. Findings: Morphology of pure nickel and graphene were examined using scanning electron microscopy (SEM) images. Research limitations/implications: The important limitations is that freely dispersed micron sized iron particles could settle over a period of time, in the form of cakes at the bottommost, and it is tedious to recuperate as dispersed phase. In this investigation, nano sized nickel particles were used as additive to reduce the sedimentation of micron sized iron particles so that, the mixture is homogeneous for extended period of time. In future, addition of different types composite additives in the magnetorheological fluid could be made for the better sedimentation control. Practical implications: The sedimentation problem is one of the major drawback in the smart fluids, which can be eliminated by adding nano particles. For conventional fluid, the complete sedimentation will occur in 2 hours while the improved nano magnetic fluid with additive has good resistance to settle the micron sized iron particle up to 10 hours. Originality/value: To prepare a low cost magnetorheological fluid with nano additives like nickel particles along with fillers as graphene nano particles. With this addition of nickel and inclusion of graphene, the sedimentation problem in magnetorheological fluids is significantly reduced. This magnetorheological fluids can be used in brakes and dampers of automobiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.