Abstract

High-valent first-row transition-metal-oxo complexes are important intermediates in biologically and chemically relevant oxidative transformations of organic molecules and in the water splitting reaction in (artificial) photosynthesis. While high-valent Fe- and Mn-oxo complexes have been characterized in detail, much less is known about their analogues with late transition metals. In this study, we present the synthesis and detailed characterization of a unique mononuclear terminal Ni-O complex. This compound, [Ni(TAML)(O)(OH)]3-, is characterized by an intense charge-transfer (CT) band around 730 nm and has an St = 1 ground state, as determined by magnetic circular dichroism spectroscopy. From extended X-ray absorption fine structure (EXAFS), the Ni-O bond distance is 1.84 Å. Ni K edge XAS data indicate that the complex contains a Ni(III) center, which results from an unusually large degree of Ni-O π-bond inversion, with one hole located on the oxo ligand. The complex is therefore best described as a low-spin Ni(III) complex (S = 1/2) with a bound oxyl (O•-) ligand (S = 1/2), where the spins of Ni and oxyl are ferromagnetically coupled, giving rise to the observed St = 1 ground state. This bonding description is roughly equivalent to the presence of a Ni-O single (σ) bond. Reactivity studies show that [Ni(TAML)(O)(OH)]3- is a strong oxidant capable of oxidizing thioanisole and styrene derivatives with large negative ρ values in the Hammett plot, indicating its electrophilic nature. The intermediate also shows high reactivity in C-H bond activation of hydrocarbons with a kinetic isotope effect of 7.0(3) in xanthene oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call