Abstract

The mechanism of the C-H bond activation of hydrocarbons by a nonheme chromium(IV) oxo complex bearing an N-methylated tetraazamacrocyclic cyclam (TMC) ligand, [Cr(IV)(O)(TMC)(Cl)](+) (2), has been investigated experimentally and theoretically. In experimental studies, reaction rates of 2 with substrates having weak C-H bonds were found to depend on the concentration and bond dissociation energies of the substrates. A large kinetic isotope effect value of 60 was determined in the oxidation of dihydroanthracene (DHA) and deuterated DHA by 2. These results led us to propose that the C-H bond activation reaction occurs via a H-atom abstraction mechanism, in which H-atom abstraction of substrates by 2 is the rate-determining step. In addition, formation of a chromium(III) hydroxo complex, [Cr(III)(OH)(TMC)(Cl)](+) (3), was observed as a decomposed product of 2 in the C-H bond activation reaction. The Cr(III)OH product was characterized unambiguously with various spectroscopic methods and X-ray crystallography. Density functional theory (DFT) calculations support the experimental observations that the C-H bond activation by 2 does not occur via the conventional H-atom-abstraction/oxygen-rebound mechanism and that 3 is the product formed in this C-H bond activation reaction. DFT calculations also propose that 2 may have some Cr(III)O(•-) character. The oxidizing power of 2 was then compared with that of a chromium(III) superoxo complex bearing the identical TMC ligand, [Cr(III)(O2)(TMC)(Cl)](+) (1), in the C-H bond activation reaction. By performing reactions of 1 and 2 with substrates under identical conditions, we were able to demonstrate that the reactivity of 2 is slightly greater than that of 1. DFT calculations again support this experimental observation, showing that the rate-limiting barrier for the reaction with 2 is slightly lower than that of 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.