Abstract

Objective: To study the effectiveness of an integrated intervention of health worker training, a low-cost ecological mosquito ovitrap, and community engagement on Aedes spp. mosquito control over 10 months in 2015 in an urban remote community in Guatemala at risk of dengue, chikungunya and Zika virus transmission. Methods: We implemented a three-component integrated intervention consisting of: web-based training of local health personnel in vector control, cluster-randomized assignment of an ecological modified ovitrap (ovillantas: ovi=egg, llanta=tire) or standard ovitraps to capture Aedes spp. mosquito eggs (no efforts have been taken to determine the exact Aedes species at this moment), and community engagement to promote participation of community members and health personnel in the understanding and maintenance of ovitraps for mosquito control. The intervention was implemented in local collaboration with Guatemala’s Ministry of Health’s Vector Control Programme, and in international collaboration with the National Institute of Public Health in Mexico. Findings: Eighty percent of the 25 local health personnel enrolled in the training programme received accreditation of their improved knowledge of vector control. When ovillantas were used in a cluster of ovitraps (several in proximity), significantly more eggs were trapped by ecological ovillantas than standard ovitraps over the 10 month (42 week) study period (t=5.2577; p<0.05). Repetitive filtering and recycling of the attractant solution (or water) kept the ovillanta clean, free from algae growth. Among both community members and health workers, the levels of knowledge, interest, and participation in community mosquito control and trapping increased. Recommendations for enhancing and sustaining community mosquito control were identified. Conclusion: Our three-component integrated intervention proved beneficial to this remote community at risk of mosquito-borne diseases such as dengue, chikungunya, and Zika. The combination of training of health workers, cluster use of low-cost ecological ovillanta to destroy the second generation of mosquitoes, and community engagement ensured the project met local needs and fostered collaboration and participation of the community, which can help improve sustainability. The ovillanta intervention and methodology may be modified to target other species such as Culex, should it be established that such mosquitoes carry Zika virus in addition to Aedes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.