Abstract
Objective: To study the effectiveness of an integrated intervention of health worker training, a low-cost ecological mosquito ovitrap, and community engagement on Aedes spp. mosquito control over 10 months in 2015 in an urban remote community in Guatemala at risk of dengue, chikungunya and Zika virus transmission. Methods: We implemented a three-component integrated intervention consisting of: web-based training of local health personnel in vector control, cluster-randomized assignment of an ecological modified ovitrap (ovillantas: ovi=egg, llanta=tire) or standard ovitraps to capture Aedes spp. mosquito eggs (no efforts have been taken to determine the exact Aedes species at this moment), and community engagement to promote participation of community members and health personnel in the understanding and maintenance of ovitraps for mosquito control. The intervention was implemented in local collaboration with Guatemala's Ministry of Health's Vector Control Programme, and in international collaboration with the National Institute of Public Health in Mexico. Findings: Eighty percent of the 25 local health personnel enrolled in the training programme received accreditation of their improved knowledge of vector control. When ovillantas were used in a cluster of ovitraps (several in proximity), significantly more eggs were trapped by ecological ovillantas than standard ovitraps over the 10 month (42 week) study period (t=5.2577; p<0.05). Repetitive filtering and recycling of the attractant solution (or water) kept the ovillanta clean, free from algae growth. Among both community members and health workers, the levels of knowledge, interest, and participation in community mosquito control and trapping increased. Recommendations for enhancing and sustaining community mosquito control were identified. Conclusion: Our three-component integrated intervention proved beneficial to this remote community at risk of mosquito-borne diseases such as dengue, chikungunya, and Zika. The combination of training of health workers, cluster use of low-cost ecological ovillanta to destroy the second generation of mosquitoes, and community engagement ensured the project met local needs and fostered collaboration and participation of the community, which can help improve sustainability. The ovillanta intervention and methodology may be modified to target other species such as Culex, should it be established that such mosquitoes carry Zika virus in addition to Aedes.
Highlights
There is increasing concern about mosquito-borne disease, amplified by the recent Latin American outbreaks of Zika virus, which have raised new alarm about their rapid spread and illness in vulnerable populations[1]
We sought to determine the effectiveness of this integrated intervention on Aedes spp. mosquito control over 10 months in 2015 in an urban remote community in Guatemala at risk of dengue, chikungunya and Zika virus transmission
Our project was enabled by intersectoral collaboration between academic researchers, local health authorities from the Ministry of Health Vector Control Programme of Guatemala. international collaborators in Canada, Guatemala and Mexico, and community members
Summary
There is increasing concern about mosquito-borne disease, amplified by the recent Latin American outbreaks of Zika virus, which have raised new alarm about their rapid spread and illness in vulnerable populations[1]. The Americas have seen invasion of dengue virus, chikungunya virus, and most recently the Zika virus, causing dangerous outbreaks and subsequent morbidity and mortality that have proved difficult to control in a sustainable manner. All of these viruses, plus the yellow fever virus, are transmitted mainly by mosquitoes of the Aedes genus (subgender: Stegomyia), the African species Aedes aegypti, one of the most aggressive vector mosquitoes capable of transmitting these illnesses, and to a lesser level the Asian tiger mosquito, Aedes albopictus, which prefers to bite during the day and is emerging as one of the most adaptable insects in the world[3,4,5]. I would suggest refocusing on the role of ovitraps, and conducting a more comprehensive literature review of different ovitraps currently on the market, their limitations and strengths
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.