Abstract
AbstractGlacial debris flows occurring on the Tibetan Plateau consistently result in significant property damage and loss of human life. A comprehensive field investigation was conducted in Tianmo valley along the Sichuan‐Tibet Highway to reveal the dynamics of a debris flow that occurred on 11 July 2018. Furthermore, a depth‐averaged multiphase debris flow model was proposed and employed to reconstruct the characteristics of the debris flow. The model derivation, implementation, evaluation, and application were presented to demonstrate its performance. The Voellmy model was chosen because it adequately accounts for both basal frictional effects and the entrainment phenomenon. The entrainment processes, the ice melting, and the lubrication effect, were also taken into consideration. Based on the numerical results combined with field investigation data, the kinetic characteristics of the glacial debris flow were analyzed. The Tianmo valley has a small area, but the volume and erosion rate of debris flows were much larger than that of two‐phase debris flows in the same location due to ice melting. The simulation results demonstrated that the glacial debris reached a peak velocity of 20 m/s. Additionally, the volume of the debris flow increased by 50% due to the erosion over a short runout distance of approximately 4,000 m. This increase was a result of the high velocity and abundant entrainment sources on the slope. This study aims to improve understanding of the high velocity and destructive potential of debris flows in the Tianmo valley.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have