Abstract

A preliminary study on estimating aerodynamic forces of a Vertical/Short Takeoff and Landing (V/STOL) mini Unmanned Air Vehicle (UAV) configuration with Distributed Electric Propulsion (DEP) system is presented. The main objective is to offer the next generation fixed wing mini UAV aircraft configuration with high-speed cruise flight and vertical take-off capabilities. The proposed concept uses four electric motors and propellers combination located on the leading edge of the wing. The described method uses semi-empirical formulations in order to estimate the forces and moments generated by the wing immersed in its distributed propeller slipstreams. Actuator disk theory is used for the propeller slipstream, where the thrust is assumed to be known for the calculations. Upwash of the fuselage and each propeller slipstream are taken into account for the wing and propeller inflow angle calculations. The resulting method, which is written as a program, serves as a conceptual design program for this type of configuration. Additionally, the program will be used for generating data for flight dynamics simulations. A candidate design is also presented, which is being manufactured for the on-going developments and tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.