Abstract

Per- and polyfluoroalkyl substances (PFAS) can represent a significant human health risk if present in aquifers used as a drinking water source. Accurate assessment of PFAS exposure risks requires an improved understanding of field-scale PFAS transport in groundwater. Activities at a former firefighter training site in University Park, Pennsylvania introduced perfluorooctanesulfonic acid (PFOS) to the underlying dolomite aquifer. Groundwater sampling from 2015 to 2018 delineated a PFOS plume with two concentration maxima located approximately 20 and approximately 220 m downgradient of the training site, separated by a zone of lower concentrations. We use a combination of analytical and numerical models, informed by independent measurements of aquifer porosity, hydraulic conductivity, and organic carbon content, to interpret the field observations. Our analysis demonstrates that preferential retention and transport resulting from simple heterogeneity in bedrock sorption, as caused by organic carbon (OC) content variability, provides a plausible explanation for plume separation. Dissolved PFOS partitions strongly to organic solids (high Koc ), so even a small OC (<1wt%) significantly retards PFOS transport, whereas zones with little to no OC allow for transport rates that approximate those of a conservative solute. Our work highlights an important consideration for modeling the groundwater transport of PFOS, and other compounds with high Koc . In aquifers with discrete layers of varying OC, models using a uniform site-average OC will underestimate transport distances, thereby misrepresenting exposure risks for downgradient communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.