Abstract

Cardiovascular disease is one of the deadliest diseases in the world. This is evidenced by data released by WHO which shows around 18 million deaths. This disease causes the cessation of the heartbeat which is the main source of life for the human body.This disease is caused by various things including an unhealthy lifestyle. Examples are consuming cigarettes and alcohol. In addition, it is also caused by other factors, namely health problems such as high blood pressure, cholesterol, diabetes, depression, or anxiety. The cardiovascular disease tends to be difficult to cure, therefore a precise and accurate prediction is needed in diagnosing patients. One method of making predictions is using machine learning techniques. In machine learning, there are various methods that can be used, one of which is the decision tree-based method, namely random forest. Before the random forest is implemented to create a model, the data is pre-processed by normalizing and applying cross-validation with k-fold = 10. The prediction results with the random forest in this study provide an accuracy of 98%. This accuracy is higher when compared to previous studies with the same dataset, namely 96.75% using the ensemble method and 91.61% with logistic regression. On this basis, it proves that the random forest can be used to predict cardiovascular disease.
 Key Words: cardiovascular disease, tree model, random forest, machine learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.