Abstract

This article is concerned with bipartite tracking for a class of nonlinear multiagent systems under a signed directed graph, where the followers are with unknown virtual control gains. In the predictor-based neural dynamic surface control (NDSC) framework, a bipartite tracking control strategy is proposed by the introduction of predictors and the minimal number of learning parameters (MNLPs) technology along with the graph theory. Different from the traditional NDSC, the predictor-based NDSC utilizes prediction errors to update the neural network for improving system transient performance. The MNLPs technology is employed to avoid the problem of "explosion of learning parameters". It is proved that all closed-loop signals steered by the proposed control strategy are bounded, and the system achieves bipartite consensus. Simulation results verify the efficiency and effectiveness of the strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.