Abstract
Phase-change memory (PCM) is a novel type of nonvolatile memory and is suitable for artificial neural synapses. This article investigates the Lagrange global exponential stability (LGES) of a class of PCNNs with mixed time delays. First, based on the conductivity characteristics of PCM, a piecewise equation is established to describe the electrical conductivity of PCM. By using the proposed piecewise equation to simulate the neural synapses, a novel PCNN with discrete and distributed time delays is proposed. Then, using comparative theory and fundamental inequalities, the LGES conditions based on the M -matrix are proposed in the sense of Filippov, and the exponential attractive set (EAS) is obtained based on M -matrix and external input. Moreover, the Lyapunov global exponential stability (GES) conditions of PCNNs without external input are obtained by using the inequality technique and eigenvalue theory, which is a form of M -matrix. Finally, two simulation examples are given to verify the validity of the obtained results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.