Abstract

Purpose: Due to an increase in a number of bridges being constructed, scour depth around bridge piers is gradually being recognized as one of the possible reasons for bridge failure. According to [1] about 53% of bridge failures in the US were caused due to floods and corresponding scour in the rivers. Lots of work has been carried out around the single pier but in the case of group piers, the work is very less. Hence, it becomes necessary to calculate the actual scour depth around the bridge piers considering the close location of bridges as well. Design/methodology/approach: Recognizing the need for research in this direction, an experimental study was planned and conducted in the Hydraulics Laboratory of Civil Engineering Department of National Institute of Technology Kurukshetra, India. Experiments were conducted in a standard recirculating tilting bed water flume 15 m long, 0.4 m wide, and 0.60 m deep. The orientation of more than one pier, namely Tandem pattern was employed for the work. Two pier models, 62 mm and 42 mm diameter were used for the experimental study. The mobile bed used in the experiments had an average mean size, d50 = 0.23 mm, 0.30 mm and 0.50 mm. Findings: The outcomes of the ANN function and M5 model analysis have been used to compare with experimental results. From the earlier studies, it was concluded that, when the clear spacing between the pier models was greater than 0D the scour depth around the piers increase with a rapid rate. However, in the case of modelling techniques, M5 models show higher predictive accuracy than ANN models. Research limitations/implications: It is a significant area of research. However, the present study has been a time and facility- constrained study. Therefore, there is a large scope to conduct further studies on the subject, Different pattern i.e. Side by Side; Staggered and Group of piers can be adopted for further investigations. Originality/value: Sufficient work has been done by number of researchers around the single bridge pier. But due to rapid urbanization a number of bridges constructed in close proximity to each other which affects the scour depth of each other. Modelling techniques used in hydraulic engineering are not always effective in practice. The present study discusses the effect of spacing on scouring around piers in a tandem arrangement using experimental as well as modelling techniques. To predict the scour depth of the Tandem arrangement 89 laboratory data sets have been used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call