Abstract

The spherulite growth, nucleation-related,K g, parameter values obtained from isothermal data (by DSC or optical microscopy) and two other adjustable parameters (the spherulite growth rate preexponential factor and the Avrami's or Tobin's exponent,n) have been used with Nakamura's and Tobin's modified non-isothermal equations to model the kinetics of polymer non-isothermal crystallization. Malkin's model was also tested, for comparison.It is shown that, for polymers that crystallize on cooling almost entirely at temperatures higher than the maximum growth rate temperature, this Tobin's-like non-isothermal model accurately describes the experimental behaviour with only 2 parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.