Abstract
The temperature dependence of the Gibbs free energy difference (ΔG) between the undercooled liquid and the corresponding equilibrium solid has been analysed for metallic glass forming systems in the frame of the expression obtained by expanding free energies of the undercooled liquid and solid phases in the form of Taylor's series expansion. The enthalpy difference (ΔH) and the entropy difference (ΔH) between the undercooled liquid and solid phases have also been analysed. The study is made for five different metallic glass forming materials, Au77Ge13.6Si9.4, Au53.2Pb27.5Sb19.3, Au81.4Si18.6, Mg85.5Cu14.5 and Mg81.6Ga18.4 and a very good agreement is found between calculated and experimental values of ΔG. The ideal glass transition temperature (T k) and the residual entropy (ΔS R) of these materials have also been studied due to their important role in assigning the glass formation ability of materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.