Abstract

Both well defined star-shaped poly(ε-caprolactone) having four arms (4sPCL) and six arms (6sPCL) and linear PCL having one arm (LPCL) and two arms (2LPCL) were synthesized and then used for the investigation of physical properties, isothermal and nonisothermal crystallization kinetics, and spherulitic growth. The maximal melting point, the cold crystallization temperature, and the degree of crystallinity of these PCL polymers decrease with the increasing number of polymer arms, and they have similar crystalline structure. The isothermal crystallization rate constant ( K) of these PCL polymers is in the order of K 2LPCL> K LPCL> K 4sPCL> K 6sPCL. Notably, the K of linear PCL decreases with the increasing molecular weight of polymer while that of star-shaped PCL inversely increases. The variation trend of K over the number of polymer arms or the molecular weight of polymer is consistent with the analyses of both nonisothermal crystallization kinetics and the spherulitic growth rate. These results indicate that both the number of polymer arms and the molecular weight of polymer mainly controlled the isothermal and nonisothermal crystallization rate constants, the spherulitic growth rate, and the spherulitic morphology of these PCL polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.