Abstract
Matrix metalloproteinase (MMPs) and disintegrin and metalloprotease (ADAMs) belong to the zinc-dependent metalloproteinase family of proteins. These proteins participate in various physiological and pathological states. Thus, prediction of these proteins using amino acid sequence would be helpful. We have developed a method to predict these proteins based on the features derived from Chou's pseudo amino acid composition (PseAAC) server and support vector machine (SVM) as a powerful machine learning approach. With this method, for ADAMs and MMPs families, an overall accuracy and Matthew's correlation coefficient (MCC) of 95.89 and 0.90% were achieved respectively. Furthermore, the method is able to predict two major subclasses of MMP family; Furin-activated secreted MMPs and Type II trans-membrane; with MCC of 0.89 and 0.91%, respectively. The overall accuracy for Furin-activated secreted MMPs and Type II trans-membrane was 98.18 and 99.07, respectively. Our data demonstrates an effective classification of Metalloproteinase family based on the concept of PseAAC and SVM.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have