Abstract
The traditional methods of cancer diagnosis and cancer-type recognition have quite a large number of limitations in terms of speed and accuracy. However, recent studies on cancer diagnosis are focused on molecular level identification so as to improve the capability of diagnosis process. By statistically analyzing the heart cancer datasets using a set of protocols and algorithms, gene expression profiles are efficiently analyzed. Various machine learning classifiers are used to classify the selected data. Cross-validation was performed to avoid overfitting and different ratios of training, and testing data was used to conclude the best optimization technique and classification algorithm for the heart cancer datasets. The data is optimized using optimization techniques like particle swarm optimization (PSO), grey wolf optimization (GWO), and hybrid particle swarm optimization with grey wolf optimizer (HPSOGWO). Results show an improvement in the prediction accuracy of heart cancer by the hybrid algorithm as compared to PSO and GWO algorithms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have