Abstract

The efficiency of elasticity characteristics prediction for the unidirectional polymer composite materials at high temperatures is investigated. The deformation of such materials at the elevated temperature is described using the linear model of mechanics of multiphase media. The mechanical properties of the ablating materials depend on the temperature and the heating rate. It is shown that the specific density of the unreinforced matrix, the bundle of polymer fibers and the unidirectional carbon fiber-reinforced plastics changes significantly at the elevated temperature. The comparison between the calculated elasticity characteristics of the ablating transversely isotropic materials and their experimental results is given.

Highlights

  • The efficiency of elasticity characteristics prediction for the unidirectional polymer composite materials at high temperatures is investigated. The deformation of such materials at the elevated temperature is described using the linear model of mechanics of multiphase media

  • The mechanical properties of the ablating materials depend on the temperature and the heating rate

  • It is shown that the specific density of the unreinforced matrix, the bundle of polymer fibers and the unidirectional carbon fiberreinforced plastics changes significantly at the elevated temperature

Read more

Summary

Introduction

Исследуется эффективность прогнозирования характеристик упругости однонаправленных полимерных композиционных материалов при высоких температурах. Что удельная плотность неармированной матрицы, пучка углеродных волокон и полимерных однонаправленных углепластиков существенно изменяется при повышении температуры. Целью данной работы является анализ прогнозирования характеристик упругости, исходя из свойств компонентов, однонаправленных композиционных материалов при высоких температурах с учетом процессов абляции.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.