Abstract

This study aims to estimate the driving times of drivers who prefer electric scooter vehicles. In general, e-scooters reduce the loss of time caused by traffic jams because, thanks to their smaller size and maneuverability, these vehicles provide rapid progress in urban journeys. E-scooters also offer an advantage in finding a parking space and easy parking thanks to their more compact structure. In this study, ML algorithms were used to predict the driving times of drivers who prefer e-scooter vehicles. The AB model has performed well with a low Mean Square Error (MSE) value (0.005). The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values are also relatively low (0.069 and 0.039, respectively), indicating that the model's predictions are close to the actual values. Also, the high R-squared-Coefficient of Determination (R2) value (0.947) suggests that this model explains the data quite well, and its predictions approach the actual values with high accuracy. On the other hand, the GB algorithm performed poorly compared to different algorithms, with its high margin of error and low accuracy rate. These results provide an advantage in time management by estimating the travel time a driver will make with the e-scooter. As a result, e-scooters offer drivers the opportunity to save time and manage their daily mobility more effectively, driving these vehicles attractive for transportation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call