Abstract

Water is a prime necessity for the survival and sustenance of all living beings. Over the past few years, the water quality of rivers is adversely affected due to harmful wastes and pollutants. This ever-increasing water pollution is a big matter of concern as it deteriorating the water quality, making it unfit for any type of use. Recently, water quality modelling using machine learning techniques has generated a lot of interest and can be very beneficial in ecological and water resources management. However, they suffer many times from high computational complexity and high prediction error. The good performance of a deep neural network like long short-term memory network (LSTM) has been exploited for the time-series data. In this paper, a deep learning-based Bi-LSTM model (DLBL-WQA) is introduced to forecast the water quality factors of Yamuna River, India. The existing schemes do not perform missing value imputation and focus only on the learning process without including a loss function pertaining to training error. The proposed model shows a novel scheme which includes missing value imputation in the first phase, the second phase generates the feature maps from the given input data, the third phase includes a Bi-LSTM architecture to improve the learning process, and finally, an optimized loss function is applied to reduce the training error. Thus, the proposed model improves forecasting accuracy. Data comprising monthly samples of different water quality factors were collected for 6 years (2013-2019) at several locations in the Delhi region. Experimental results reveal that predicted values of the model and the actual values were in a close agreement and could reveal a future trend. The performance of our model was compared with various state of the art techniques like SVR, random forest, artificial neural network, LSTM, and CNN-LSTM. To check the accuracy, metrics like root mean square errors (RMSE), the mean absolute error (MAE), mean square error (MSE), and mean absolute percentage error (MAPE) have been used. Experimental analysis is carried out by measuring the COD and BOD levels. COD analysis reveals the MSE, RMSE, MAE, and MAPE values as 0.015, 0.117, 0.115, and 20.32, respectively, for the Palla region. Similarly, BOD analysis indicates the MSE, RMSE, MAE, and MAPE values as 0.107, 0.108, 0.124, and 18.22, respectively. A comparative analysis reveals that the proposed model outperforms all other models in terms of the best forecasting accuracy and lowest error rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call