Abstract
Aiming at the characteristics of dam safety monitoring data sequence with few samples, short sequence and nonlinearity, a dam horizontal displacement prediction method based on attention mechanism, convolutional neural network (CNN) and long short-term memory (LSTM) is proposed. This method can reduce the loss of historical information and improve the prediction accuracy. First, the missing values are supplemented by linear interpolation to improve the integrity of the data. Then the abstract feature data extracted by CNN is mapped to the predicted value of LSTM, and then optimized through attention mechanism. Finally, the model is trained and verified with the monitoring data of a concrete gravity dam in Chongqing as a sample. Experimental results show that the root mean square error (RMSE), mean absolute percentage error (MAPE) and fit (R2) of the CNN-LSTM hybrid model based on attention mechanism are 0.3882, 0.7121% and 0.9543, respectively. The prediction accuracy of the new model is better than the CNN-LSTM model and the LSTM neural network model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Academic Journal of Architecture and Geotechnical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.