Abstract
In investigating gaussian radial basis function (RBF) networks for their ability to model nonlinear time series, we have found that while RBF networks are much faster than standard sigmoid unit backpropagation for low-dimensional problems, their advantages diminish in high-dimensional input spaces. This is particularly troublesome if the input space contains irrelevant variables. We suggest that this limitation is due to the localized nature of RBFs. To gain the advantages of the highly nonlocal sigmoids and the speed advantages of RBFs, we propose a particular class of semilocal activation functions that is a natural interpolation between these two families. We present evidence that networks using these gaussian bar units avoid the slow learning problem of sigmoid unit networks, and, very importantly, are more accurate than RBF networks in the presence of irrelevant inputs. On the Mackey-Glass and Coupled Lattice Map problems, the speedup over sigmoid networks is so dramatic that the difference in training time between RBF and gaussian bar networks is minor. Gaussian bar architectures that superpose composed gaussians (gaussians-of-gaussians) to approximate the unknown function have the best performance. We postulate that an interesing behavior displayed by gaussian bar functions under gradient descent dynamics, which we call automatic connection pruning, is an important factor in the success of this representation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.