Abstract
AbstractShipping companies are forced by the current EU regulation to set up a system for monitoring, reporting, and verification of harmful emissions from their fleet. In this regulatory background, data collected from onboard sensors can be utilized to assess the ship's operating conditions and quantify its CO2emission levels. The standard approach for analyzing such data sets is based on summarizing the measurements obtained during a given voyage by the average value. However, this compression step may lead to significant information loss since most variables present a dynamic profile that is not well approximated by the average value only. Therefore, in this work, we test two feature‐oriented methods that are able to extract additional features, namely, profile‐driven features (PdF) and statistical pattern analysis (SPA). A real data set from a Ro‐Pax ship is then considered to test the selected methods. The data set is segregated according to the voyage distance into short, medium, and long routes. Both PdF and SPA are compared with the standard approach, and the results demonstrate the benefits of employing more systematic and informative feature‐oriented methods. For the short route, no method is able to predict CO2emissions in a satisfactory way, whereas for the medium and long routes, regression models built using features obtained from both PdF and SPA improve their prediction performance. In particular, for the long route, the standard approach failed to provide reasonably good predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Stochastic Models in Business and Industry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.