Abstract

Abstract The determination of the full population of Resident Space Objects (RSOs) in Low Earth Orbit (LEO) is a key issue in the field of space situational awareness that will only increase in importance in the coming years. We endeavour to describe a novel method of inferring the population of RSOs as a function of orbital height and inclination for a range of magnitudes. The method described uses observations of an orbit of known height and inclination to detect RSOs on neighbouring orbits. These neighbouring orbit targets move slowly relative to our tracked orbit, and are thus detectable down to faint magnitudes. We conduct simulations to show that, by observing multiple passes of a known orbit, we can infer the population of RSOs within a defined region of orbital parameter space. Observing a range of orbits from different orbital sites will allow for the inference of a population of LEO RSOs as a function of their orbital parameters and object magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.