Abstract
Predicting mobile machine tool dynamics prior to moving the machine to a new part and/or location is essential to guide first-time-right in situ machining solutions. This paper considers such a priori prediction of assembled dynamics under varying base/part/contact characteristics by applying dynamic substructuring procedures. Assembled dynamics are predicted by substructural coupling of the machine's known free-free response with the known response of any base/part measured at location. Since obtaining the machine's free-free response remains non-trivial, we instead extract the machine's dynamics using substructure decoupling procedures. Substructuring is carried out using measured frequency response functions. Methods are tested for robustness, and are experimentally validated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have