Abstract

In the realm of materials science, the integration of machine learning techniques has ushered in a transformative era. This study delves into the innovative application of generative adversarial networks (GANs) for generating heat flux data, a pivotal step in predicting lattice thermal conductivity within metallic materials. Leveraging GANs, this research explores the generation of meaningful heat flux data, which has a high degree of similarity with that calculated by molecular dynamics simulations. This study demonstrates the potential of artificial intelligence (AI) in understanding the complex physical meaning of data in materials science. By harnessing the power of such AI to generate data that is previously attainable only through experiments or simulations, new opportunities arise for exploring and predicting properties of materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.